федеральное государственное бюджетное образовательное учреждение высшего образования

«Кемеровский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО КемГМУ Минздрава России)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Специальность
Квалификация выпускника
Форма обучения
Факультет
Кафедра-разработчик рабочей программы

33.05.01 Фармация провизор очная фармацевтический кафедра фармацевтической и

общей химии

ď		цоем- сть	Лек- ций, ч.	Лаб. прак- тику	Пра кт. зан	Клини- ческих практ.	Сем ина ров,	СР С, ч.	КР	Экза мен, ч	Форма промежут очного
Семестр		-1.	м, ч.	яти занятий й, ч. , ч.	ч.	7.5			контроля (экзамен / зачет с оценкой / зачет)		
I	5	180	24		72			48		36	экзамен
Итого	5	180	24	-	72			48	-	36	экзамен

Рабочая программа дисциплины «Общая и неорганическая химия» разработана в соответствии с ФГОС ВО по направлению подготовки (специальности) 33.05.01 «Фармация», квалификация «провизор», утвержденным приказом Министерства образования и науки России N 219 от 27.03.2018.

Рабочую программу разработал (-и) доц. каф. фармацевтической и общей химии, канд. хим. наук, доц. Е.П. Дягилева
Рабочая программа согласована с научной библиотекой
Рабочая программа рассмотрена и одобрена на заседании кафедры фармацевтической и общей химии протокол № _——— от «ОУ_» ОД 20 № г.
Рабочая программа согласована с учебно-методической комиссией фармацевтического факультета Председатель: канд. фарм. наук А.А. Марьин протокол № 2 от « № » О2 20 № г
Рабочая программа согласована с деканом фармацевтического факультета канд. фарм. наук А.А. Марьин
Рабочая программа зарегистрирована в учебно-методическом отделе Регистрационный номер

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ

1.1. Цели и задачи освоения дисциплины

- 1.1.1. Целями освоения дисциплины «Общая и неорганическая химия» является формирование компетенций, необходимых для последующего изучения химических дисциплин (аналитической химии, органической химии, физической и коллоидной химии).
 - 1.1.2. Задачи дисциплины:
 - 1. Формирование представлений о строении атомов, молекул, химической связи.
 - 2. Изучение основ стехиометрических расчетов.
 - 3. Формирование представлений о химическом равновесии и разных типах химических реакций.
 - 4. Формирование представлений о растворах, их свойствах и количественных характеристиках.
 - 5. Изучение химических свойств важнейших химических элементов и их соединений.

1.2. Место дисциплины в структуре ОПОП ВО

- 1.2.1. Дисциплина относится к обязательной части ООП Б1.О.05.
- 1.2.2. Для изучения дисциплины необходимы знания, умения и навыки, формируемые на уроках химии, физики, математики по программам средней общеобразовательной школы.
- 1.2.3. Изучение дисциплины «Общая и неорганическая химия» необходимо для получения знаний, умений и навыков, востребованных последующими дисциплинами: «Физическая и коллоидная химия», «Аналитическая химия», «Органическая химия», «Биологическая химия», «Токсикологическая химия», «Фармацевтическая химия», «Фармакогнозия», «Фармацевтическая технология».
- В основе преподавания данной дисциплины лежат следующие типы профессиональной деятельности:
 - 01 Образование и наука (в сфере научных исследований)
- **02** Здравоохранение (в сфере обращения лекарственных средств и других товаров аптечного ассортимента)
- **07** Административно-управленческая и офисная деятельность (в сфере обращения лекарственных средств)

1.3. Компетенции, формируемые в результате освоения дисциплины

1.3.2. Общепрофессиональные компетенции

№	Категория компетенц ий	Код компе- тенций	Содержание компетенций	Индикаторы компетенций	Технология формирования
1	Профессио- нальная методо- логия	ОПК-1	Способен использовать основные биологические, физико-химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов	ИДопк-1-2. Применяет основные физико-химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов	Лекции, практические занятия, самостоятельная работа

1.4. Объем учебной дисциплины и виды учебной работы

	Трудоемк	ость всего	Сем	естр	
Вид учебно	в зачетных единицах (ЗЕ)	в академи- ческих часах (ч)	1		
		()		кость по рам (ч)	
				1	
Аудиторная работа,	в том числе:	2,7	96	96	
Лекции (Л)		0,7	24	24	
Лабораторные практи	икумы (ЛП)				
Практические заняти	я (ПЗ)	2	72	72	
Клинические практические занятия (КПЗ)					
Семинары (С)					
Самостоятельная работа студента (СРС), в том числе НИР		1,3	48	48	
Промежуточная аттестация:	экзамен (Э)	1	36	36	
	ИТОГО	5	180	180	

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

2.1. Структура дисциплины

No		стр	3	Виды учебной работы					СРС
п/п	Наименование разделов и тем	Семестр	Всего часов	Аудиторные часы					
1	Раздел 1. Стехиометрия. Концентрация	1	18	Л	ЛП	П3 12	КПЗ	С	6
1.1	Тема 1.1. Закон эквивалентов	1	12			4			4
1.2	Тема 1.2. Концентрация вещества в растворе	1	6			8			2
2	Раздел 2. Строение вещества	1	14	6		4			4
2.1	Тема 2.1. Строение атомов	1	4	2		2			2
2.2	Тема 2.2. Химическая связь	1	10	4		2			2
3	Раздел 3. Скорость реакций и химическое равновесие	1	12	4		8			4
3.1	Тема 3.1. Скорость реакций и химическое равновесие	1	12	4		4			4
	Коллоквиум 1 по разделам 1, 2 и 3	1	4			4			
4	Раздел 4. Химические реакции в растворах. Физико-химические свойства растворов	1	68	14		36			22
4.1	Тема 4.1. Окислительновосстановительные реакции и электродные потенциалы	1	14	2		8			4
4.2	Тема 4.2. Комплексные соединения	1	14	2		8			4
4.3	Тема 4.3. Коллигативные свойства растворов	1	8	2		4			2
4.4	Тема 4.4. Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в	1	6	2		2			2
4.5	Тема 4.5. Равновесие между осадком и раствором	1	6	2		2			2
4.6	Тема 4.6. Кислотно-основное равновесие	1	20	4		8			8
	Коллоквиум 2 по разделу 4		4			4			
	Раздел 5. Химия элементов	1	24			12			12
5.1	Тема 5.1. Химия металлов Ia, IIa, IIIa групп	1	8			4			4
5.2	Тема 5.2. Химия неметаллов	1	8			4			4
5.3	Тема 5.3. Химия тяжелых металлов и d- элементов	1	8			4			4
	Экзамен Итого	1	36 180	24		72			48

2.2. Тематический план лекционных (теоретических) занятий

№ п/п	Наименование раздела, тема лекции	Кол-во часов	Семестр	Результат обучения в виде формируемых компетенций
Разд	ел 2. Строение вещества	6	1	ОПК-1
1	Тема 2.1. Строение атомов	2	1	
2	Тема 2.2. Химическая связь (Ч.1)	2	1	
3	Тема 2.3. Химическая связь (Ч.2)	2	1	
	ел 3. Скорость реакций и химическое новесие	4	1	ОПК-1
4	Тема 3.1. Скорость реакций и химическое равновесие (Ч.1)	2	1	
5	Тема 3.2. Скорость реакций и химическое равновесие (Ч.2)	2	1	
	ел 4. Химические реакции в растворах. ико-химические свойства растворов	14	1	ОПК-1
6	Тема 4.1. Окислительно-восстановительные (OB) реакции и электродные потенциалы	2	1	
7	Тема 4.2. Комплексные соединения	2	1	
8	Тема 4.3. Коллигативные свойства растворов	2	1	
9	Тема 4.4. Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в растворе	2	1	
10	Тема 4.5. Равновесие между осадком и раствором	2	1	
11	Тема 4.6. Кислотно-основное равновесие (Ч.1)	2	1	
12	Тема 4.7. Кислотно-основное равновесие (Ч.2)	2	1	
	Итого	24		

2.3. Тематический план практических занятий

№ п/ п	Наименование раздела, тема занятия	Вид занятия (ПЗ, С, КПЗ, ЛП)		г-во сов СРС	Семестр	Результат обучения в виде формируемых компетенций
Разд	цел 1. Стехиометрия. Концентрация		12	6	1	ОПК-1
1	Тема 1.1. Закон эквивалентов	ПЗ	4	4	1	
2	Тема 1.2. Концентрация вещества в растворе	ПЗ	8	2	1	
Разд	цел 2. Строение вещества		4	4	1	ОПК-1
3	Тема 2.1. Строение атомов	ПЗ	2	2	1	
4	Тема 2.2. Химическая связь	П3	2	2	1	
	цел 3. Скорость реакций и ическое равновесие		8	4	1	ОПК-1
4	Тема 3.1. Скорость реакций и химическое равновесие	ПЗ	4	4	1	
5	Коллоквиум 1 по разделам 1, 2 и 3	ПЗ	4		1	
раст	цел 4. Химические реакции в гворах. Физико-химические свойства гворов Тема 4.1. Окислительно-	Но	36	22	1	ОПК-1
6	восстановительные реакции и электродные потенциалы	П3	8	4	1	
7	Тема 4.2. Комплексные соединения	П3	8	4	1	
8	Тема 4.3. Коллигативные свойства растворов	ПЗ	4	2	1	
9	Тема 4.4. Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в растворе	ПЗ	2	2	1	
10	Тема 4.5. Равновесие между осадком и раствором	ПЗ	2	2	1	
11	Тема 4.6. Кислотно-основное равновесие	ПЗ	8	8	1	
12	Коллоквиум 2 по разделу 4	П3	4			
Разд	цел 5. Химия элементов		12	12	1	ОПК-1
13	Тема 5.1. Химия металлов Ia, IIa, IIIa групп	ПЗ	4	4	1	
14	Тема 5.2. Химия неметаллов	П3	4	4	1	
15	Тема 5.3. Химия тяжелых металлов и d-элементов	ПЗ	4	4	1	
	Итого		72	48		

2.4. Содержание дисциплины

РАЗДЕЛ 1. СТЕХИОМЕТРИЯ. КОНЦЕНТРАЦИЯ

Тема 1.1. Закон эквивалентов

Содержание темы:

- 1. Эквивалент. Фактор эквивалентности. Количество вещества эквивалента. Молярная масса эквивалента. Закон эквивалентов. Эталонные стехиометрические единицы: атом водорода, ион водорода, атом кислорода. Их эквиваленты.
- 2. Уравнение состояния идеального газа (Менделеева-Клапейрона). Закон Авогадро как следствие уравнения состояния.
- 3. Решение задач по темам: «Стехиометрические расчеты. Закон эквивалентов. Уравнение состояния идеального газа».
- 4. Лабораторная работа 1 «Определение молярной массы эквивалента солей».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, оформление отчёта по лабораторной работе 1.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 1.2. Концентрация вещества в растворе

Содержание темы:

- 1. Способы выражения концентрации вещества в растворе: массовая доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, титр, молярная доля. Соответствующие формулы и единицы измерения.
- 2. Решение задач по темам «Концентрация. Расчеты при приготовлении растворов».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

РАЗДЕЛ 2. СТРОЕНИЕ ВЕЩЕСТВА

Тема 2.1. Строение атомов

Содержание темы:

- 1. Атомное ядро: состав, заряд, масса, размеры.
- 2. Квантовая теория атома. Квантовые числа, их физический смысл.
- 3. Принцип Паули. Порядок заполнения орбиталей электронами. Правило Гунда.

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 2.2. Химическая связь

Содержание темы:

- 1. Ковалентная связь. Основные характеристики химической связи. Сигма-, пи- и дельта- связи.
- 2. Гибридизация атомных орбиталей и соответствующая им симметрия и форма молекул.
- 3. Резонансные структуры. Делокализованная пи- связь.
- 4. Форма и симметрия многоатомных молекул. Полярные и неполярные молекулы.
- 5. Метод молекулярных орбиталей. Энергетическая диаграмма для двухатомных молекул. Определение порядка связи.

6. Решение задач по темам «Ковалентная связь. Гибридизация атомных орбиталей. Сигма и пи - связи. Симметрия и форма молекул».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

РАЗДЕЛ 3. СКОРОСТЬ РЕАКЦИЙ И ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Тема 3.1. Скорость реакций и химическое равновесие

Содержание темы:

- 1. Скорость химической реакции. Зависимость скорости реакции от времени и концентрации реагирующих веществ: закон действующих масс. Константа скорости реакции, ее размерность, физический смысл.
- 2. Кинетическое уравнение реакции. Порядок и молекулярность реакции. Реакции первого порядка.
- 3. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- 4. Обратимые реакции. Определение константы химического равновесия на основе закона действующих масс.
- 5. Смещение химического равновесия при воздействии на систему: принцип Ле-Шателье. Влияние температуры, давления, изменения концентрации одного из реагентов на состояние равновесия.
- 6. Решение задач по темам «Закон действующих масс. Зависимость скорости реакции от температуры. Химическое равновесие. Принцип Ле Шателье».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

РАЗДЕЛ 4. ХИМИЧЕСКИЕ РЕАКЦИИ В РАСТВОРАХ. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ

Тема 4.1. Окислительно-восстановительные реакции и электродные потенциалы *Содержание темы:*

- 1. Окислительно-восстановительные (OB) реакции, их классификация. Окислитель. Восстановитель. Степень окисленности.
- 2. Метод ОВ полуреакций.
- 3. Электродный потенциал. Сопряженная ОВ пара. Стандартные электродные потенциалы. Схема и способ измерения электродного потенциала. Уравнение Нернста. Определение направления ОВ реакции.
- 4. Решение задач по темам «Метод ОВ полуреакций. Расчет ЭДС и определение направления ОВ реакции. Уравнение Нернста».
- 5. Лабораторная работа 2 «Окислительно-восстановительные реакции».

Форма контроля и отчетности усвоения материала: опорный конспект, решение ситуационных задач, оформление отчёта по лабораторной работе 2.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 4.2. Комплексные соединения

Содержание темы:

- 1. Комплексные соединения. Основные понятия и термины: центральный атом, лиганды, координационное число, внешняя и внутренняя сфера комплекса, дентатность, хелаты.
- 2. Природа химической связи в комплексных соединениях.
- 3. Типичные комплексообразователи и лиганды.
- 4. Номенклатура комплексных соединений.
- 5. Равновесия в водных растворах комплексов. Общие и ступенчатые константы устойчивости комплексов.
- 6. Решение задач по теме «Комплексные соединения».
- 7. Лабораторная работа 3 «Комплексные соединения».

Форма контроля и отчетности усвоения материала: опорный конспект, решение ситуационных задач, оформление отчёта по лабораторной работе 3.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 4.3. Коллигативные свойства растворов

Содержание темы:

- 1. Осмос. Осмотическое давление. Закон Вант-Гоффа. Гипотонические, гипертонические и изотонические растворы.
- 2. Давление насыщенного пара над раствором. Температуры кипения и замерзания растворов. Законы Рауля. Эбулиоскопическая и криоскопическая константы растворителя.
- 3. Особенности коллигативных свойств растворов сильных электролитов. Изотонический коэффициент, кажущаяся степень диссоциации.
- 4. Решение задач по теме «Коллигативные свойства растворов».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 4.4. Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в растворе

Содержание темы:

- 1. Сильные и слабые электролиты. Степень и константа диссоциации (ионизации). Закон разбавления Оствальда.
- 2. Идеальные растворы.
- 3. Коллигативные свойства растворов сильных электролитов. Ионная сила раствора. Стандартное состояние. Активность. Коэффициент активности. Формула Дебая-Хюккеля.
- 4. Решение задач по теме «Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в растворе».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 4.5. Равновесие между осадком и раствором

Содержание темы:

- 1. Равновесие между осадком и раствором.
- 2. Насыщенный раствор. Растворимость.
- 3. Константа равновесия между осадком и раствором. Правило, следующее из выражения этой константы по закону действующих масс.
- 4. Расчет молярной растворимости по произведению растворимости.
- 5. Равновесные условия образования и растворения осадка. Пересыщенный раствор.
- 6. Решение задач по теме «Равновесие между осадком и раствором».

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы, решение ситуационных задач.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 4.6. Кислотно-основное равновесие

Содержание темы:

- 1. Концепция кислот и оснований Бренстеда-Лоури. Кислота. Основание. Амфолит. Сопряженная кислотно-основная пара.
- 2. Протолитические свойства воды. Реакция и константа автопротолиза воды.
- 3. Понятие о кислом, щелочном, нейтральном растворе.
- 4. Водородный показатель (рН). Расчет рН нейтрального раствора. Шкала рН.
- 5. Кислотно-основные индикаторы.
- 6. Характеристика кислот и оснований по силе. Константы кислотности и основности.
- 7. Расчет рН растворов кислот и оснований.
- 8. Кислотно-основные свойства водных растворов солей. Протолитические свойства катионов и анионов. Классификация солей по их кислотно-основным свойствам.
- 9. Гидролиз. Взаимное усиление гидролиза.
- 10. Расчет констант кислотности и основности ионов. Расчет рН водных растворов солей.
- 11. Решение задач по теме «Расчет рН растворов кислот и оснований. Протолитические свойства водных растворов солей».
- 12. Лабораторная работа 4 «Кислотно-основные реакции. Определение рН растворов при помощи индикаторов».

Форма контроля и отчетности усвоения материала: опорный конспект, решение ситуационных задач, оформление отчёта по лабораторной работе 4.

Использование электронного обучения и дистанционных образовательных технологий: нет.

РАЗДЕЛ 5. ХИМИЯ ЭЛЕМЕНТОВ

Тема 5.1. Химия металлов Іа, ІІа, ІІІа групп

Содержание темы:

- 1. Химические реакции соединений элементов Ia, IIa, IIIa групп (Li, Na, K, Ca, Sr, Ba, Al)
- 2. Щелочные металлы (Li, Na, K). Их физические и химические свойства. Оксиды и гидроксиды щелочных металлов. Соли щелочных металлов.
- 3. Магний, кальций, стронций, барий. Их физические и химические свойства. Оксиды и гидроксиды. Способность к комплексообразованию. Растворимость солей магния, кальция, стронция, бария.

4. Алюминий. Физические и химические свойства. Оксид и гидроксид алюминия. Комплексные соединения алюминия. Растворимость солей.

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 5.2. Химия неметаллов

Содержание темы:

- 1. Химические реакции соединений элементов- неметаллов (H, B, C, Si, N, P, As, O, S, F, Cl, Br, I)
- 2. Водород и его соединения. Гидриды. Аквакомплексы. Пероксид водорода.
- 3. Бор. Борсодержащие кислоты. Бура. Анионные комплексы бора.
- 4. Углерод. Оксиды углерода (II и IV). Угольная кислота, карбонаты. Синильная кислота, цианиды. Тиоцианаты (роданиды), роданистоводородная кислота. Карбонат-, цианид-, цианат- и тиоцианат-ионы как лиганды. Красная и желтая кровяные соли.
- 5. Кремний. Оксид кремния. Орто- и метакремниевые кислоты. Силикаты. Стекло.
- 6. Азот. Соединения азота с водородом и кислородом. Оксиды азота. Азотная кислота. Нитраты. Азотистая кислота. Нитриты. ОВ свойства кислородных соединений азота.
- 7. Фосфор. Оксид фосфора (V). Фосфоросодержащие кислоты и их соли. ОВ свойства.
- 8. Мышьяк. Сурьма. Висмут. Оксиды. Гидроксиды. Кислоты. Соли. ОВ свойства соединений мышьяка, сурьмы, висмута.
- 9. Кислород. Озон. Пероксиды. Пероксокислоты (надкислоты).
- 10. Сера. Сероводород. Сульфиды. Полисульфиды. Оксиды серы. Кислородсодержащие кислоты серы. ОВ свойства соединений серы.
- 11. Фтор. Фтороводород. Плавиковая кислота. Фториды. Малорастворимые фториды.
- 12. Хлор, бром, йод. Галогеноводороды. Хлориды. Бромиды. Йодиды. ОВ свойства галогенид-ионов. Кислоты и их соли. ОВ свойства кислородных соединений хлора, брома и йода.

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы.

Использование электронного обучения и дистанционных образовательных технологий: нет.

Тема 5.3. Химия тяжелых металлов ид-элементов

Содержание темы:

- 1. Химические реакции соединений элементов тяжелых металлов и d-элементов (Cu, Ag, Zn, Cd, Hg, Sn, Pb, Sb, Bi, Cr, Mn, Fe, Co, Ni)
- 2. Медь. Оксиды меди. Гидроксид меди. Соли меди (I). Растворимые комплексы меди (I и II). ОВ свойства соединений меди.
- 3. Серебро. Оксид серебра. ОВ свойства соединений серебра. Растворимые и малорастворимые соли серебра. Растворимые комплексы серебра.
- 4. Цинк. Кадмий. Ртуть. Гидроксиды цинка и кадмия. Оксид ртути. Соли ртути (I и II). Сулема. Каломель. Металлический цинк как восстановитель. ОВ свойства соединений ртути. Растворимые комплексы цинка, кадмия и ртути. Взаимодействие катионов цинка, кадмия и ртути с аммиаком.
- 5. Олово и свинец. Оксиды и гидроксиды олова и свинца. Оловянная и свинцовая кислоты. Станнаты. Плюмбаты. ОВ свойства соединений олова и свинца.

- 6. Хром. Оксиды и гидроксиды хрома (II и III). Оксид хрома (VI). Хромовая кислота. Двухромовая кислота. Полихромовые кислоты. Хроматы. Бихроматы. Пероксид хрома. ОВ свойства соединений хрома. Комплексные соединения хрома.
- 7. Марганец. Оксид и гидроксиды марганца (II, III, IV). Манганаты. Марганцевая кислота. Перманганаты. Восстановление перманганата в кислом, щелочном и нейтральном растворе. ОВ свойства соединений марганца. Комплексные соединения.
- 8. Железо. Кобальт. Никель. Оксиды и гидроксиды (II и III). Ферраты (VI). ОВ свойства соединений железа, кобальта, никеля. Комплексные соединения железа, кобальта, никеля. Карбонилы.

Форма контроля и отчетности усвоения материала: опорный конспект, контрольные вопросы.

Использование электронного обучения и дистанционных образовательных технологий:

2.5. Учебно-методическое обеспечение самостоятельной работы

Наименование раздела, тема	Вид самостоятельной работы обучающегося (аудиторной и внеаудиторной)	Кол- во часов	Семестр
Раздел 1. Стехиометрия. Концентрац	6	1	
Тема 1.1. Закон эквивалентов	Контрольные вопросы, опорный конспект, ситуационные задачи	4	1
Тема 1.2. Концентрация вещества в растворе	Контрольные вопросы, опорный конспект, ситуационные задачи, отчет по лабораторной работе 1	2	1
Раздел 2. Строение вещества		4	1
Тема 2.1. Строение атомов	Контрольные вопросы, опорный конспект	2	1
Тема 2.2. Химическая связь	Контрольные вопросы, опорный конспект, ситуационные задачи	2	1
Раздел 3. Скорость реакций и химиче	еское равновесие	4	1
Тема 3.1. Скорость реакций и химическое равновесие	Контрольные вопросы, опорный конспект, ситуационные задачи	4	1
<u> </u>	астворах. Физико-химические свойства	22	1
растворов Тема 4.1. Окислительно- восстановительные реакции и электродные потенциалы	Контрольные вопросы, опорный конспект, ситуационные задачи, отчет по лабораторной работе 2	4	1
Тема 4.2. Комплексные соединения	Контрольные вопросы, опорный конспект, ситуационные задачи, отчет по лабораторной работе 3	4	1
Тема 4.3. Коллигативные свойства растворов	Контрольные вопросы, опорный конспект, ситуационные задачи	2	1
Тема 4.4. Сильные и слабые электролиты. Степень и константа ионизации. Активность ионов в растворе	Контрольные вопросы, опорный конспект, ситуационные задачи	2	1
Тема 4.5. Равновесие между осадком и раствором	Контрольные вопросы, опорный конспект, ситуационные задачи	2	1
Тема 4.6. Кислотно-основное равновесие	Контрольные вопросы, опорный конспект, ситуационные задачи, отчет по лабораторной работе 4	8	1
Раздел 5. Химия элементов		12	1
Тема 5.1. Химия металлов Ia, IIa, IIIa групп	Контрольные вопросы, опорный конспект	4	1
Тема 5.2. Химия неметаллов	Контрольные вопросы, опорный конспект	4	1
Тема 5.3. Химия тяжелых металлов и d-элементов	Контрольные вопросы, опорный конспект	4	1
	Итого	48	1

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

3.1. Занятия, проводимые в интерактивной форме

№	Наименование раздела дисциплины	Вид учебных занятий	Колич ество часов	Формы интерактивного обучения	Коли честв о
	Раздел 1. Стехиометрия. К	Сонцентрация	12		4
1	Тема 1.2. Концентрация вещества в растворе	Лабораторная работа 1	4	Работа в малых группах, тренинг	4
	Раздел 2. Строение вещества				4
2	Тема 2.1. Строение атомов	Лекция	2	Презентация	2
3	Тема 2.2. Химическая связь	Лекция	2	Презентация	2
	Раздел 3. Скорость реакций и химическое равновесие				2
4	Тема 3.1. Скорость реакций и химическое равновесие	Лекция	2	Презентация	2
	Раздел 4. Химические реаграстворах. Физи химические свой	ко-	50		12
5	Тема 4.1. Окислительновосстановительные (ОВ) реакции и электродные потенциалы	Лабораторная работа 2	4	Работа в малых группах, тренинг	4
6	Тема 4.2. Комплексные соединения	Лабораторная работа 3	4	Работа в малых группах, тренинг	4
7	Тема 4.6. Кислотно-основное равновесие	Лабораторная работа 4	4	Работа в малых группах, тренинг	4
	Раздел 5. Химия элементо	В	12		2
8	Тема 5.3. Химия тяжелых металлов и d-элементов	Практическое занятие	2	Работа в малых группах	2
		Итого:	96		24

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

4.1. Контрольно-диагностические материалы

Промежуточная аттестация по дисциплине проводится в форме экзамена. Билет включает два теоретических вопроса (вопросы по курсу лекций), две ситуационные задачи из разделов дисциплины 1, 2, 3, 4, 5.

4.2. Оценочные средства (представлены в приложении 1)

- 1. Список вопросов для подготовки к экзамену
- 2. Ситуационные задачи

4.3. Критерии оценки по дисциплине в целом

Характеристика ответа	Оценка ECTS	Баллы в РС	Оценка итоговая
Дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, проявляющаяся в свободном оперировании понятиями, умении выделить существенные и несущественные его признаки, причинно-следственные связи. Знания об объекте демонстрируются на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию студента. Могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа	A-B	100-91	5
Дан полный, развернутый ответ на поставленный вопрос, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. В ответе допущены недочеты, исправленные студентом с помощью преподавателя	C-D	90-81	4
Дан недостаточно полный и недостаточно развернутый ответ. Логика и последовательность изложения имеют нарушения. Допущены ошибки в раскрытии понятий, употреблении терминов. Студент не способен самостоятельно выделить существенные и несущественные признаки и причинноследственные связи. Студент может конкретизировать обобщенные знания, доказав на примерах их основные положения только с помощью преподавателя. Речевое оформление требует поправок, коррекции	E	80-71	3
Дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания студентом их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции	Fx-F	<70	2 Требует ся пересдач а/ повторн ое изучени е дисципл ины

5. ИНФОРМАЦИОННОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Информационное обеспечение дисциплины

No	Наименование и краткая характеристика библиотечно-информационных ресурсов и
п/п	средств обеспечения образовательного процесса, в том числе электронно-библиотечных
	систем и электронных образовательных ресурсов (электронных изданий и
	информационных баз данных)
	ЭБС:
	ЭБС «Консультант Студента»: сайт / ООО «КОНСУЛЬТАНТ СТУДЕНТА». –
1	Москва, 2013-2025 URL: https://www.studentlibrary.ru Режим доступа: по IP-адресу
	университета, удаленный доступ по логину и паролю Текс: электронный.
	Справочно-информационная система «MedBaseGeotar»: сайт / ООО «КОНСУЛЬТАНТ СТУДЕНТА». – Москва, 2024-2025. – URL: https://mbasegeotar.ru -
2	Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю
	Текст: электронный.
	Электронная библиотечная система «Медицинская библиотека «MEDLIB.RU»
3	(ЭБС «MEDLIB.RU»): сайт / ООО «Медицинское информационное агентство»
	Москва, 2016-2025 URL: https://www.medlib.ru Режим доступа: по IP-адресу
	университета, удаленный доступ по логину и паролю Текст: электронный. «Электронная библиотечная система «Букап»: сайт / ООО «Букап» Томск, 2012-
4	2025 URL: https://www.books-up.ru Режим доступа: по IP-адресу университета,
-	удаленный доступ по логину и паролю Текст: электронный.
	«Электронные издания» издательства «Лаборатория знаний» / ООО «Лаборатория
5	знаний» Москва, 2015-2025 URL: https://moodle.kemsma.ru. — Режим доступа: по
	логину и паролю Текст: электронный.
6	База данных ЭБС «ЛАНЬ»: сайт / ООО «ЭБС ЛАНЬ» - СПб., 2017-2025 URL:
6	https://.e.lanbook.com Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю Текст: электронный.
	«Образовательная платформа ЮРАИТ»: сайт / ООО «ЭЛЕКТРОННОЕ
	ИЗДАТЕЛЬСТВО ЮРАЙТ» Москва, 2013-2025 URL: https://urait.ru Режим
7	доступа: по ІР-адресу университета, удаленный доступ по логину и паролю. – Текст:
	электронный.
	«JAYPEE DIGITAL» (Индия) - комплексная интегрированная платформа
8	медицинских ресурсов: сайт - URL: https://www.jaypeedigital.com/ - Режим доступа:
	по ІР-адресу университета, удаленный доступ по логину и паролю Текст:
	электронный.
	Информационно-справочная система «КОДЕКС»: код ИСС 89781 «Медицина и здравоохранение»: сайт / ООО «ГК «Кодекс» СПб., 2016 -2025 URL:
9	здравоохранение»: саит / ООО «ГК «Кодекс»: - СПо., 2010 -2023: - СКС. http://kod.kodeks.ru/docs Режим доступа: по IP-адресу университета, удаленный
	доступ по логину и паролю Текст: электронный.
	Электронная библиотека КемГМУ (Свидетельство о государственной регистрации
10	базы данных № 2017621006 от 06.09. 2017 г.) Кемерово, 2017-2025
10	URL: http://www.moodle.kemsma.ru Режим доступа: по логину и паролю Текст:
	электронный.
	Интернет-ресурсы:
11	http://www.alhimic.ru
12	http://www.chem.msu.ru
	•

5.2. Учебно-методическое обеспечение дисциплины

No॒	
Π/	Библиографическое описание рекомендуемого источника литературы
П	
	Основная литература
1	Ершов, Ю. А. Общая химия. Биофизическая химия. Химия биогенных элементов: учебник для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд. — 10-е изд., испр. и доп. — Москва: Издательство Юрайт, 2025. — 557 с. // Образовательная платформа Юрайт URL: https://urait.ru Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю. — Текст: электронный.
2	Общая и неорганическая химия для медиков и фармацевтов: учебник и практикум для вузов / под общей редакцией В. В. Негребецкого, И. Ю. Белавина, В. П. Сергеевой. — Москва: Издательство Юрайт, 2025. — 389 с. // Образовательная платформа Юрайт URL: https://urait.ru Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю. — Текст: электронный.
3	Общая и неорганическая химия: учебник для вузов / Э. Т. Оганесян, В. А. Попков, Л. И. Щербакова, А. К. Брель; под редакцией Э. Т. Оганесяна. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 558 с. // Образовательная платформа Юрайт URL: https://urait.ru Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю. – Текст: электронный.
	Дополнительная литература
4	Глинка, Н. Л. Общая химия: учебник для вузов / Н. Л. Глинка; под редакцией В. А. Попкова, А. В. Бабкова. — 20-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 717 с. // Образовательная платформа Юрайт URL: https://urait.ru Режим доступа: по IP-адресу университета, удаленный доступ по логину и паролю. — Текст: электронный.

5.3. Методические разработки кафедры

№	
Π/	Библиографическое описание рекомендуемого источника литературы
П	
1	Башмаков, А. С. Неорганическая химия: учебное пособие для обучающихся по основной
	профессиональной образовательной программе высшего образования программе
	специалитета по специальности 33.05.01 «Фармация» / А. С. Башмаков ; Кемеровский
	государственный медицинский университет Кемерово: [б. и.], 2022 64 с. //
	Электронные издания КемГМУ URL: http://www.moodle.kemsma.ru. – Режим доступа:
	для авторизованных пользователей Текст: электронный.
2	Башмаков, А. С. Общая и неорганическая химия: учебно-методическое пособие для
	обучающихся по основной профессиональной образовательной программе высшего
	образования — программе специалитета по специальности 33.05.01 Фармация / А. С.
	Башмаков, Е. В. Леонтьева ; Кемеровский государственный медицинский университет
	Кемерово: [б. и.], 2020 104 с. // Электронные издания КемГМУ URL:
	http://www.moodle.kemsma.ru. – Режим доступа: для авторизованных пользователей
	Текст: электронный.

1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Помещения:

Учебные комнаты, учебные лаборатории, комната для самостоятельной работы, лекционная аудитория

Оборудование:

доски, столы, стулья, лабораторные столы, лабораторные мойки, вытяжные шкафы, лабораторные весы, химическая посуда (пробирки, цилиндры, стаканы, колбы, пипетки, бюретки), штативы

Средства обучения

Технические: видеопроекторы, компьютеры, подключение к сети Интернет

Демонстрационные материалы:

Таблицы Менделеева, таблицы и плакаты по разным темам дисциплины

Оценочные средства

Экзаменационные билеты, задания для текущего и рубежного контроля

Учебные материалы

Учебники, учебно-методические пособия, справочники

Программное обеспечение

Microsoft Windows 7 и 10 Professional, Microsoft Office 10 Standard, Linux GNU GPL, Libre Office GNU LGPL.v3, Dr. Web Security Space, Kaspersky Endpoint Security Russian Edition

1. Список вопросов для подготовки к экзамену

- 1. Эквивалент. Закон эквивалентов. Количество вещества эквивалента. Фактор эквивалентности. Молярная масса эквивалента. Эталонные стехиометрические единицы: атом водорода, ион водорода, атом кислорода. Их эквиваленты.
- 2. Уравнение состояния идеального газа (Менделеева-Клапейрона). Закон Авогадро как следствие уравнения состояния.
- 3. Способы выражения концентрации вещества в растворе: массовая доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, титр, молярная доля. Соответствующие формулы и единицы измерения.
- 4. Модель атома Томпсона. Опыты Резерфорда и их толкование. Планетарная модель атома Бора. Постулаты Бора. Атомное ядро: состав, заряд, масса, размеры.
- 5. Квантовая теория атома. Волновое уравнение. Волновая функция. Орбиталь. Квантовые числа, их физический смысл. Спин электрона. Опыты Штерна-Герлаха. Спиновое квантовое число.
- 6. Принцип Паули. Порядок заполнения орбиталей электронами. Правило Гунда.
- 7. Природа химической связи. Квантовомеханический расчет молекулы водорода Гайтлера и Лондона. Метод валентных связей. Основные положения.
- 8. Ковалентная связь. Основные характеристики химической связи: энергия, длина, полярность, кратность, направленность, насыщаемость. σ , π и δ связи. Донорно-акцептоный способ трактовки ковалентной связи.
- 9. Гибридизация атомных орбиталей и соответствующая им симметрия и форма молекул.
- 10. Резонансные структуры. Делокализованная π- связь.
- 11. Форма и симметрия многоатомных молекул. Валентный угол. Дипольный момент молекул. Полярные и неполярные молекулы.
- 12. Метод молекулярных орбиталей. Основные положения. Энергетическая диаграмма для двухатомных молекул. Определение порядка связи.
- 13. Ионная связь. Отличие от ковалентной. Кристаллическая решетка. Соединения с ионной связью, их физические и химические свойства.
- 14. Металлическая связь. Природа, отличительные особенности. Энергетические зоны. Водородная связь: межмолекулярная, внутримолекулярная. Примеры веществ с водородной связью. Влияние водородной связи на физические свойства веществ.
- 15. Межмолекулярное взаимодействие: ориентационное, индукционное, дисперсионное, донорно-акцепторное. Влияние межмолекулярного взаимодействия на физические свойства вещества.
- 16. Понятие скорости химической реакции. Зависимость скорости реакции от времени и концентрации реагирующих веществ: закон действующих масс. Константа скорости реакции, ее размерность, физический смысл.
- 17. Кинетическое уравнение реакции. Порядок и молекулярность реакции. Реакции первого порядка.
- 18. Зависимость скорости реакции от температуры (причина этой зависимости). Энергетическая диаграмма реакции. Активированный комплекс. Распределение частиц по энергиям при разной температуре. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- 19. Катализ и катализаторы. Принцип действия катализатора. Энергетическая диаграмма каталитической реакции. Гомогенный и гетерогенный катализ. Автокаталитические реакции.
- 20. Обратимые реакции. Определение константы химического равновесия на основе закона действующих масс. Заторможенное состояние.

- 21. Смещение химического равновесия при воздействии на систему: принцип Ле-Шателье. Влияние температуры, давления, изменения концентрации одного из реагентов на состояние равновесия.
- 22. Окислительно-восстановительные (OB) реакции, их классификация. Окислитель. Восстановитель. Степень окисленности. Примеры типичных окислителей, восстановителей, веществ, проявляющих свойства как окислителя, так и восстановителя. ОВ реакции самоокисления-самовосстановления.
- 23. Электродный потенциал. Сопряженная ОВ пара. Стандартный водородный электрод. Стандартный электродный потенциал. Схема и способ измерения электродного потенциала. Уравнение Нернста. Определение направления ОВ реакции.
- 24. Комплексные соединения. Основные понятия и термины: центральный атом, лиганды, координационное число, внешняя и внутренняя сфера комплекса, дентатность, хелаты. Природа химической связи в комплексных соединениях.
- 25. Типичные комплексообразователи и лиганды.
- 26. Номенклатура комплексных соединений.
- 27. Равновесия в водных растворах комплексов. Общие и ступенчатые константы устойчивости комплексов. Расчет концентрации катиона, не связанного в комплекс, при условии, что в растворе присутствует избыток лигандов.
- 28. Коллигативные свойства растворов. Давление насыщенного пара над раствором. Первый закон Рауля.
- 29. Осмос. Осмотическое давление. Закон Вант-Гоффа. Гипотонические, гипертонические и изотонические растворы.
- 30. Температуры кипения и кристаллизации раствора. Второй закон Рауля как следствие первого. Эбулиоскопическая и криоскопическая константы растворителя.
- 31. Особенности коллигативных свойств растворов сильных электролитов. Изотонический коэффициент. Кажущаяся степень диссоциации.
- 32. Определение молярной массы вещества методом измерения коллигативных свойств раствора этого вещества.
- 33. Сильные и слабые электролиты. Диссоциация. Ионизация. Степень ионизации. Константа ионизации слабого электролита. Связь степени ионизации с концентрацией слабого электролита (закон разбавления Оствальда, вывод формулы).
- 34. Равновесия в растворах сильных электролитов. Процессы, которые влияют на коллигативные свойства растворов сильных электролитов. Активность. Стандартное состояние. Коэффициент активности. Ионная сила раствора. Формула Дебая-Хюккеля.
- 35. Равновесие между осадком и раствором. Насыщенный раствор. Растворимость. Константа равновесия между осадком и раствором. Правило, следующее из выражения этой константы по закону действующих масс. Расчет молярной растворимости по произведению растворимости. Равновесные условия образования и растворения осадка. Пересыщенный раствор.
- 36. Концепция кислот и оснований Бренстеда-Лоури. Кислота. Основание. Амфолит. Сопряженная кислотно-основная пара. Концепция кислот и оснований Льюиса.
- 37. Протолитические свойства воды. Реакция и константа автопротолиза воды. Понятие о кислом, щелочном, нейтральном растворе.
- 38. Водородный показатель (рН). Расчет рН нейтрального раствора. Шкала рН.
- 39. Кислотно-основные индикаторы.
- 40. Характеристика кислот и оснований по силе. Константы кислотности и основности. Сильные, слабые, очень слабые кислоты и основания. Связь между константами кислотности и основности кислоты и сопряженного основания. Следствия из формулы, выражающей эту связь.
- 41. Расчет рН растворов кислот и оснований.

- 42. Кислотно-основные свойства водных растворов солей. Протолитические свойства катионов и анионов. Классификация солей по их кислотно-основным свойствам: 1) катион очень слабая кислота, анион очень слабое основание; 2) катион очень слабая кислота, анион слабое основание; 3) катион слабая кислота, анион очень слабое основание; 4) катион слабая кислота, анион слабое основание; 5) катион очень слабая кислота, анион амфолит. Реакции, определяющие протолитические свойства водных растворов солей. Примеры солей с разными протолитическими свойствами.
- 43. Взаимное усиление гидролиза.
- 44. Расчет констант кислотности и основности ионов. Расчет рН водных растворов солей.
- 45. Водород и его соединения. Простое вещество, его физические и химические свойства. Гидриды. Вода. Кислотно-основные и окислительно-восстановительные (ОВ) свойства воды. Аквакомплексы. Пероксид водорода, его физические, кислотно-основные и ОВ свойства. Реакция самоокисления-самовосстановления пероксида водорода.
- 46. Щелочные металлы (Li, Na, K). Их физические и химические свойства. Оксиды и гидроксиды щелочных металлов. Соли щелочных металлов.
- 47. Магний, кальций, стронций, барий. Их физические и химические свойства. Оксиды и гидроксиды. Способность к комплексообразованию. Растворимость солей магния, кальция, стронция, бария. Гипс.
- 48. Бор. Физические и химические свойства. Оксид бора. Орто-, мета-, тетраборная кислоты. Бура. Анионные комплексы бора.
- 49. Алюминий. Физические и химические свойства. Оксид и гидроксид алюминия. Комплексные соединения алюминия. Растворимость солей.
- 50. Углерод. Алмаз, графит, карбин. Физические и химические свойства. Карбиды металлов. Оксиды углерода (II и IV), их физические и химические свойства. Угольная кислота, карбонаты. Синильная кислота, цианиды. Тиоцианаты (роданиды), роданистоводородная кислота. ОВ свойства цианидов и тиоцианатов. Карбонат-, цианид-, цианат- и тиоцианат-ионы как лиганды. Красная и желтая кровяные соли.
- 51. Кремний. Физические и химические свойства. Оксид кремния. Орто- и метакремниевые кислоты. Силикаты. Стекло.
- 52. Олово и свинец. Физические и химические свойства. Оксиды и гидроксиды олова и свинца. Оловянная и свинцовая кислоты. Станнаты. Плюмбаты. ОВ свойства соединений олова и свинца. Растворимость солей.
- 53. Азот. Физические и химические свойства. Соединения азота с водородом. Аммиак, его физические, кислотно-основные и ОВ свойства. Соли аммония. Аммиачные комплексы. Гидразин. Гидроксиламин. Азотистоводородная кислота и азиды. Их химические свойства.
- 54. Оксиды азота. Азотная кислота. Нитраты. Азотистая кислота. Нитриты. ОВ свойства кислородных соединений азота.
- 55. Фосфор. Белый, красный, черный фосфор. Физические и химические свойства. Оксид фосфора (V). Ортофосфорная кислота. Метафосфорная кислота. Пирофосфорная кислота. Фосфаты.
- 56. Фосфорноватистая кислота. Гипофосфиты. Фосфористая кислота. Фосфиты. ОВ свойства гипофосфитов и фосфитов. Фосфин. Соли фосфония (сравнение с аммиаком и солями аммония).
- 57. Мышьяк. Сурьма. Висмут. Физические и химические свойства. Оксид мышьяка (III). Мышьяковистая кислота. Аресениты. Оксиды и гидроксиды сурьмы и висмута (III). Оксид мышьяка (V). Мышьяковая кислота. Арсенаты. Оксид сурьмы (V).

- Гидроксоантимонаты. Висмутат натрия. ОВ свойства соединений мышьяка, сурьмы, висмута.
- 58. Кислород. Озон. Физические и химические свойства. Пероксиды. Пероксокислоты (надкислоты).
- 59. Сера. Физические и химические свойства. Сероводород. Сульфиды. Полисульфиды.
- 60. Оксиды серы. Кислородсодержащие кислоты серы: сернистая, серная, полисерные, тиосерная, дитионовая кислота, политионовые кислоты, пероксомономерная кислота, пероксодисерная кислота. Олеум. Сульфиты. Сульфаты. Тиосульфаты. ОВ свойства соединений серы.
- 61. Фтор. Физические и химические свойства. Фтороводород. Плавиковая кислота. Фториды. Малорастворимые фториды.
- 62. Хлор, бром, йод. Физические и химические свойства. Галогеноводороды. Хлориды. Бромиды. Йодиды. ОВ свойства галогенид-ионов.
- 63. Хлорноватистая, броноватистая, йодноватистая кислоты. Гипохлориты, гипобромиты, гипойодиты. Хлористая кислота. Хлориты. Хлорноватая, бромноватая, йодноватая кислоты. Хлораты, броматы, йодаты. Хлорная кислота. Перхлораты. Йодная кислота. Перйодаты. ОВ свойства кислородных соединений хлора, брома и йода.
- 64. Медь. Физические и химические свойства. Оксиды меди. Гидроксид меди. Соли меди (I). Растворимые комплексы меди (I и II). ОВ свойства соединений меди.
- 65. Серебро. Физические и химические свойства. Оксид серебра. ОВ свойства соединений серебра. Растворимые и малорастворимые соли серебра. Растворимые комплексы серебра.
- 66. Цинк. Кадмий. Ртуть. Физические и химические свойства. Гидроксиды цинка и кадмия. Оксид ртути. Соли ртути (I и II). Сулема. Каломель. Металлический цинк как восстановитель. ОВ свойства соединений ртути. Растворимые комплексы цинка, кадмия и ртути. Взаимодействие катионов цинка, кадмия и ртути с аммиаком.
- 67. Хром. Физические и химические свойства. Оксиды и гидроксиды хрома (II и III). Оксид хрома (VI). Хромовая кислота. Двухромовая кислота. Полихромовые кислоты. Хроматы. Бихроматы. Пероксид хрома. ОВ свойства соединений хрома. Комплексные соединения хрома. Соль Рейнике.
- 68. Марганец. Физические и химические свойства. Оксид и гидроксиды марганца (II, III, IV). Манганаты.
- 69. Марганцевая кислота. Перманганаты. Восстановление перманганата в кислом, щелочном и нейтральном растворе. ОВ свойства соединений марганца. Комплексные соединения марганца.
- 70. Железо. Кобальт. Никель. Физические и химические свойства. Оксиды и гидроксиды (II и III). Ферраты (VI). ОВ свойства соединений железа, кобальта, никеля. Комплексные соединения железа, кобальта, никеля. Карбонилы.

2. Ситуационные задачи

1. Рассчитайте молярную концентрацию и молярную концентрацию эквивалента серной кислоты в ее 20,08% растворе, плотность которого 1,140 г/мл. Алгоритм решения.

Вычислим массу 1 л (1000 мл) раствора:

$$m = \rho \cdot V = 1000 \cdot 1,140 = 1140 \text{ r.}$$

Найдем массу серной кислоты, содержащейся в 1 л раствора:

$$\omega_{H_2SO_4} = \frac{m_{H_2SO_4}}{m_{p-pa}}.$$
 $m_{H_2SO_4} = \frac{m_{p-pa} \cdot \omega_{H_2SO_4}}{100} = \frac{1140 \cdot 20,08}{100} = 228,9 \text{ r.}$

Определим молярную концентрацию серной кислоты:

$$C_{H_2SO_4} = \frac{m_{H_2SO_4}}{M_{H_2SO_4} \cdot V} = \frac{228,9}{98,07 \cdot 1} = 2,334 \text{ M}.$$

Величина фактора эквивалентности кислот определяется числом атомов водорода, которые могут быть замещены в молекуле кислоты. В данном случае фактор эквивалентности равен $(f_{9,H_2SO_4})=1/2$, т.е. в молекуле серной кислоты замещаются два атома водорода. Тогда молярная концентрация эквивалента серной кислоты будет рассчитываться следующим образом:

$$C_{3,H_2SO_4} = \frac{c_{H_2SO_4}}{f_{3,H_2SO_4}} = \frac{2,334}{0,5} = 4,668 \text{ M}.$$

Ответ: $C_{3,H_2SO_4} = 4,668 \text{ M}$

2. Вычислите степень диссоциации и pH 0,01 M раствора аммиака. Константа ионизации (диссоциации, K_B) равна 1,76·10⁻⁵.

Алгоритм решения.

Запишем уравнение диссоциации слабого основания:

 $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$.

Вычислим степень диссоциации ионов в водном растворе аммиака:

$$lpha=rac{\sqrt{K_B\cdot C_B}}{C_B}=\sqrt{rac{K_B}{C_B}},$$
 $lpha=\sqrt{rac{1,76\cdot 10^{-5}}{0.01}}=4,195\cdot 10^{-2}$ (или 4,195%).

Рассчитаем концентрацию гидроксид ионов для слабого основания по следующей формуле:

$$[OH^{-}] = \alpha \cdot C_B = 4,195 \cdot 10^{-2} \cdot 0,01 = 4,195 \cdot 10^{-4} \text{ M}.$$

Вычислим концентрацию протонов, используя выражение для константы автопротолиза воды:

$$K_w = [H^+] \cdot [OH^-] = 1 \cdot 10^{-14}.$$

 $[H^+] = \frac{K_w}{[OH^-]} = \frac{1 \cdot 10^{-14}}{4,195 \cdot 10^{-4}} = 0,238 \cdot 10^{-10} \text{ M}.$

Рассчитаем pH раствора:

$$pH = -lg[H^+] = -\lg 0.238 \cdot 10^{-10} = 10.62.$$

Ответ: pH = 10,62.

3. Рассчитайте молярную растворимость сульфата кальция в 0,01~M растворе Na_2SO_4 на основании его произведения растворимости.

Алгоритм решения.

Составим уравнение равновесия между осадком и насыщенным раствором: $CaSO_4(\tau) \leftrightarrow Ca^{2+} + SO_4^{2-}$. Составим уравнение диссоциации сульфата натрия: $Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$.

Выразим произведение растворимости K_S (константу этого равновесия) через равновесные концентрации ионов в растворе (расчет проводим без учета ионной силы раствора):

$$K_S = \left[\operatorname{Ca}^{2+}\right] \cdot \left[\operatorname{SO}_4^{2-}\right].$$

Выразим концентрации ионов в насыщенном растворе через растворимость s. $[Ca^{2+}] = s$, $[SO_4^2] = s + C$ и подставим полученные выражения в предыдущую формулу. Получим $K_S = s \cdot (s + C)$. Здесь C — концентрация сульфата натрия в растворе. Предположим, что s << C, что справедливо, если растворимость осадка достаточно низкая. Тогда $K_S \approx s \cdot C$, $s = \frac{K_S}{C}$.

Растворимость сульфата кальция (нулевое приближение):

$$s = \frac{K_S}{C} = \frac{2.5 \cdot 10^{-5}}{0.01} = 0.010 \text{ M}.$$

Ответ: s = 0.010М.

Составьте уравнение реакции между гидроксидом железа (II) и бромом в щелочном растворе методом полуреакций, если гидроксид железа (II) окисляется до гидроксида железа (III), бром восстанавливается до бромид - иона. Определите возможность протекания реакции в прямом направлении.

Алгоритм решения.

Запишем окислительно-восстановительные полуреакции соответствующих редокс-пар.

В полуреакции Fe(OH)2..... → Fe(OH)3 уравниваем количество гидроксид ионов в левой и правой части уравнения и суммарный заряд ионов:

$$Fe(OH)_2 + OH^- - 1e^- \rightarrow Fe(OH)_3$$
.

В полуреакции Br₂ Вr⁻ уравниваем количество брома в левой и правой части уравнения и суммарный заряд ионов, прибавляя к левой части уравнения 2 электрона:

$$Br_2 + 2e^- \leftrightarrow 2Br^-$$
.

Поскольку окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления, то получим:

Fe(OH)₂ + OH⁻ – 1e⁻
$$\rightarrow$$
 Fe(OH)₃ |2
Br₂ + 2e⁻ \leftrightarrow 2Br⁻ |1

Суммируем обе полуреакции, умножив на коэффициенты:

$$2Fe(OH)_2 + 2OH^- + Br_2 \rightarrow 2Fe(OH)_3 + 2Br^-.$$

Записываем молекулярное уравнение:

$$2Fe(OH)_2 + Br_2 + 2KOH \rightarrow 2Fe(OH)_3 + 2KBr$$
.

Определим направление реакции, рассчитав электродвижущую силу (ΔE^0), используя значения стандартных окислительно-восстановительных потенциалов окислителя ($E_{Ox}^{0} =$ +1,087 В) и восстановителя ($E_{Red}^{0}=-0,56$ В):

$$\Delta E^0 = E_{Ox}^0 - E_{Red}^0 = +1,087 - (-0,56) = 1,647 \text{ B}.$$

Ответ: $2\text{Fe}(OH)_2 + \text{Br}_2 + 2\text{KOH} \rightarrow 2\text{Fe}(OH)_3 + 2\text{KBr}$. Поскольку величина электродвижущей силы больше нуля, то данная окислительно-восстановительная реакция идет в прямом направлении.

К раствору, содержащему 6,50 г хлорида хрома (III), прилили раствор сульфида натрия, содержащий 7,70 г этого вещества. Какое вещество выпало в осадок в результате взаимодействия? Рассчитайте массу образовавшегося осадка.

Алгоритм решения.

Запишем уравнение реакции:

$$2CrCl_3 + 3Na_2S + 6H_2O \rightarrow 2Cr(OH)_3 \downarrow + 6NaCl + 3H_2S$$
.

Определяем количество вещества хлорида хрома и сульфида натрия:
$$n_{CrCl_3} = \frac{m_{CrCl_3}}{m_{Crcl_3}} = \frac{6,50}{158,355} = 0,041 \text{ моль}, \quad n_{Na_2S} = \frac{m_{Na_2S}}{m_{Na_2S}} = \frac{7,70}{78,05} = 0,099 \text{ моль}.$$

Из уравнения реакции получаем: для реакции с хлоридом хрома количеством вещества 2 моль требуется 3 моль сульфида натрия.

$$2 \cdot n_{CrCl_3} = 3 \cdot n_{Na_2S}$$

$$2 \cdot n_{CrCl_3} = 3 \cdot n_{Na_2S}$$
. $n_{CrCl_3} = \frac{3}{2} \cdot n_{Na_2S} = \frac{3}{2} \cdot 0,099 = 0,148$ моль. $n_{Na_2S} = \frac{2}{3} \cdot n_{CrCl_3} = \frac{2}{3} \cdot 0,041 = 0,027$ моль.

0,027 моль – количество вещества сульфида натрия, которое необходимо для реакции, следовательно, он взят в недостатке. Расчет количества вещества и массы продукта необходимо производить, используя массу и количества вещества, которое взято в недостатке, т.е. по сульфиду натрия.

Из уравнения реакции следует: 3 моль сульфида натрия требуется для получения 2 моль гидроксида хрома, следовательно:

$$n_{Cr(OH)_3}=rac{3}{2}\cdot n_{Na_2S}=rac{3}{2}\cdot 0$$
,027 = 0,040 моль.

Рассчитаем массу гидроксида хрома:

$$m_{Cr(OH)_3} = n_{Cr(OH)_3} \cdot M_{Cr(OH)_3} = 0.040 \cdot 103.018 = 4.12 \text{ r.}$$

Ответ:
$$Cr(OH)_3 \downarrow . \ m_{Cr(OH)_3} = n_{Cr(OH)_3} \cdot M_{Cr(OH)_3} = 0.040 \cdot 103,018 = 4,121 г.$$